enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Missing data - Wikipedia

    en.wikipedia.org/wiki/Missing_data

    Furthermore, established methods for dealing with missing data, such as imputation, do not usually take into account the structure of the missing data and so development of new formulations is needed to deal with structured missingness appropriately or effectively. Finally, characterising structured missingness within the classical framework of ...

  3. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    This outlier is expunged from the dataset and the test is iterated until no outliers are detected. However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses:

  4. Imputation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Imputation_(statistics)

    That is to say, when one or more values are missing for a case, most statistical packages default to discarding any case that has a missing value, which may introduce bias or affect the representativeness of the results. Imputation preserves all cases by replacing missing data with an estimated value based on other available information.

  5. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  6. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    Where gap is the absolute difference between the outlier in question and the closest number to it. If Q > Q table, where Q table is a reference value corresponding to the sample size and confidence level, then reject the questionable point. Note that only one point may be rejected from a data set using a Q test.

  7. Data quality - Wikipedia

    en.wikipedia.org/wiki/Data_quality

    Data quality assurance is the process of data profiling to discover inconsistencies and other anomalies in the data, as well as performing data cleansing [17] [18] activities (e.g. removing outliers, missing data interpolation) to improve the data quality.

  8. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    Data elements in the dataset are used to vote for one or multiple models. The implementation of this voting scheme is based on two assumptions: that the noisy features will not vote consistently for any single model (few outliers) and there are enough features to agree on a good model (few missing data).

  9. Influential observation - Wikipedia

    en.wikipedia.org/wiki/Influential_observation

    In statistics, an influential observation is an observation for a statistical calculation whose deletion from the dataset would noticeably change the result of the calculation. [1] In particular, in regression analysis an influential observation is one whose deletion has a large effect on the parameter estimates.