enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  3. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  4. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The dot product takes in two vectors and returns a scalar, while the cross product [a] returns a pseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics, physics, and engineering. The dyadic product takes in two vectors and returns a second order tensor called a dyadic in this context. A ...

  5. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.

  6. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    The cross product of two vectors in dimensions with positive-definite quadratic form is closely related to their exterior product. Most instances of geometric algebras of interest have a nondegenerate quadratic form. If the quadratic form is fully degenerate, the inner product of any two vectors is always zero, and the geometric algebra is then ...

  7. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    Cartesian product of the sets {x,y,z} and {1,2,3}In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. [1]

  8. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    In Euclidean 3-space, the wedge product has the same magnitude as the cross product (the area of the parallelogram formed by sides and ) but generalizes to arbitrary affine spaces and products between more than two vectors. Tensor product – for two vectors and , where and are vector spaces, their tensor product belongs to the tensor product ...

  9. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    The cross product of two vectors u and v would be represented as: By some conventions (e.g. in France and in some areas of higher mathematics), this is also denoted by a wedge, [ 12 ] which avoids confusion with the wedge product since the two are functionally equivalent in three dimensions: u ∧ v {\displaystyle \mathbf {u} \wedge \mathbf {v} }