enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phosphodiester bond - Wikipedia

    en.wikipedia.org/wiki/Phosphodiester_bond

    Specifically, it is the phosphodiester bonds that link the 3' carbon atom of one sugar molecule and the 5' carbon atom of another (hence the name 3', 5' phosphodiester linkage used with reference to this kind of bond in DNA and RNA chains). [3] The involved saccharide groups are deoxyribose in DNA and ribose in RNA.

  3. Ligation (molecular biology) - Wikipedia

    en.wikipedia.org/wiki/Ligation_(molecular_biology)

    The mechanism of the ligation reaction was first elucidated in the laboratory of I. Robert Lehman. [4] [5] Two fragments of DNA may be joined by DNA ligase which catalyzes the formation of a phosphodiester bond between the 3'-hydroxyl group (-OH) at one end of a strand of DNA and the 5'-phosphate group (-PO4) of another.

  4. Nucleotide pyrophosphatase/phosphodiesterase - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_pyrophosphatase/...

    2) A two-step "associative" (addition-elimination or A N + D N) mechanism that proceeds via a pentavalent phosphorane intermediate. [13] This is represented by the blue dashed lines in the figure at right. 3) A one-step fully synchronous mechanism analogous to S N 2 substitution. Bond formation and breakage occur simultaneously and at the same ...

  5. DNA ligase - Wikipedia

    en.wikipedia.org/wiki/DNA_ligase

    DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond.It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms (such as DNA ligase IV) may specifically repair double-strand breaks (i.e. a break in both complementary strands of DNA).

  6. Phosphodiesterase - Wikipedia

    en.wikipedia.org/wiki/Phosphodiesterase

    This mechanism, as well as others, allows for cross-regulation of the cAMP and cGMP pathways. PDE12 cleaves 2',5'-phosphodiester bond linking adenosines of the 5'-triphosphorylated oligoadenylates. [ 9 ] [ 10 ] PDE12 is not a member of the cyclic nucleotide phosphodiesterase superfamily that contains PDE1 through PDE11.

  7. Adenylylation - Wikipedia

    en.wikipedia.org/wiki/Adenylylation

    Adenylylation involves a phosphodiester bond between a hydroxyl group of the molecule undergoing adenylylation, and the phosphate group of the adenosine monophosphate nucleotide (i.e. adenylic acid). Enzymes that are capable of catalyzing this process are called AMPylators.

  8. Phosphodiesterase 3 - Wikipedia

    en.wikipedia.org/wiki/Phosphodiesterase_3

    The proposed molecular mechanism of cyclic nucleotide specificity of PDEs is the so-called glutamine switch mechanism. In the PDEs that have had their structure solved, there seems to be an invariant glutamine residue that stabilizes the binding of the purine ring in the active site (binding pocket).

  9. Nuclease - Wikipedia

    en.wikipedia.org/wiki/Nuclease

    Depiction of the restriction enzyme (endonuclease) HindIII cleaving a double-stranded DNA molecule at a valid restriction site (5'–A|AGCTT–3').. In biochemistry, a nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds that link nucleotides together to form nucleic acids.