Search results
Results from the WOW.Com Content Network
An event, however, is any subset of the sample space, including any singleton set (an elementary event), the empty set (an impossible event, with probability zero) and the sample space itself (a certain event, with probability one). Other events are proper subsets of the sample space that contain multiple elements. So, for example, potential ...
For example, the probability that the dart will hit the right half of the square is 0.5, since the right half has area 0.5. Next, consider the event that the dart hits exactly a point in the diagonals of the unit square. Since the area of the diagonals of the square is 0, the probability that the dart will land exactly on a diagonal is 0.
The probability measure is a set function returning an event's probability. A probability is a real number between zero (impossible events have probability zero, though probability-zero events are not necessarily impossible) and one (the event happens almost surely, with almost total certainty).
In the mathematical theory of probability, David Lewis's triviality result is a theorem about the impossibility of systematically equating the conditional probability () with the probability of a so-called conditional event, .
This is the same as saying that the probability of event {1,2,3,4,6} is 5/6. This event encompasses the possibility of any number except five being rolled. The mutually exclusive event {5} has a probability of 1/6, and the event {1,2,3,4,5,6} has a probability of 1, that is, absolute certainty.
This is a list of probability topics. It overlaps with the (alphabetical) list of statistical topics . There are also the outline of probability and catalog of articles in probability theory .
The events 1 and 6 are mutually exclusive but not collectively exhaustive. The events "even" (2,4 or 6) and "not-6" (1,2,3,4, or 5) are also collectively exhaustive but not mutually exclusive. In some forms of mutual exclusion only one event can ever occur, whether collectively exhaustive or not.
Finally, there is a need to specify each event's likelihood of happening; this is done using the probability measure function, P. Once an experiment is designed and established, ω from the sample space Ω, all the events in F {\displaystyle \scriptstyle {\mathcal {F}}} that contain the selected outcome ω (recall that each event is a subset of ...