Search results
Results from the WOW.Com Content Network
With a fuel fraction of nearly 85%, the GlobalFlyer could carry 5 times its weight in fuel.. In aerospace engineering, an aircraft's fuel fraction, fuel weight fraction, [1] or a spacecraft's propellant fraction, is the weight of the fuel or propellant divided by the gross take-off weight of the craft (including propellant): [2]
The density values for chemical fuels do not include the weight of the oxygen required for combustion. The atomic weights of carbon and oxygen are similar, while hydrogen is much lighter. Figures are presented in this way for those fuels where in practice air would only be drawn in locally to the burner.
The increase in weight is equal to the amount of liquid displaced by the object, which is the same as the volume of the suspended object times the density of the liquid. [ 1 ] The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [ 2 ]
To calculate the density of air as a function of altitude, one requires additional parameters. For the troposphere, the lowest part (~10 km) of the atmosphere, they are listed below, along with their values according to the International Standard Atmosphere , using for calculation the universal gas constant instead of the air specific constant:
Air–fuel equivalence ratio, λ (lambda), is the ratio of actual AFR to stoichiometry for a given mixture. λ = 1.0 is at stoichiometry, rich mixtures λ < 1.0, and lean mixtures λ > 1.0. There is a direct relationship between λ and AFR. To calculate AFR from a given λ, multiply the measured λ by the
for dry air of 28.964917 g/mol. The specific gas constant of a gas or a mixture of gases ( R specific ) is given by the molar gas constant divided by the molar mass ( M ) of the gas or mixture: R s p e c i f i c = R M {\displaystyle R_{\rm {specific}}={\frac {R}{M}}}
Of all the perchlorates, lithium perchlorate has both the highest oxygen to weight and oxygen to volume ratio, except beryllium diperchlorate which is expensive and toxic. The Vika system uses a canister containing about 1 liter (2.4 kg) of perchlorate to generate 600 liters (0.86 kg) of oxygen, enough for one person for one day.
Relative density with respect to air can be obtained by =, where is the molar mass and the approximately equal sign is used because equality pertains only if 1 mol of the gas and 1 mol of air occupy the same volume at a given temperature and pressure, i.e., they are both ideal gases. Ideal behaviour is usually only seen at very low pressure.