Search results
Results from the WOW.Com Content Network
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
For negative charges, the sign of the current density is opposite to the velocity of the charges. [2]: 749 In SI units, current density (symbol: j) is expressed in the SI base units of amperes per square metre. [4]: 22 In linear materials such as metals, and under low frequencies, the current density across the conductor surface is uniform.
In special and general relativity, the four-current (technically the four-current density) [1] is the four-dimensional analogue of the current density, with units of charge per unit time per unit area. Also known as vector current, it is used in the geometric context of four-dimensional spacetime, rather than separating time from three ...
The net electric current I is the surface integral of the electric current density J passing through Σ: =, where dS denotes the differential vector element of surface area S, normal to surface Σ. (Vector area is sometimes denoted by A rather than S , but this conflicts with the notation for magnetic vector potential ).
where this time is the charge density, is the current density vector, and is the current source-sink term. The current source and current sinks are where the current density emerges σ > 0 {\displaystyle \sigma >0} or vanishes σ < 0 {\displaystyle \sigma <0} , respectively (for example, the source and sink can represent the two poles of an ...
The repeating periodicity of blocks of 2, 6, 10, and 14 elements within sections of periodic table arises naturally from total number of electrons that occupy a complete set of s, p, d, and f orbitals, respectively, though for higher values of quantum number n, particularly when the atom bears a positive charge, energies of certain sub-shells ...
where is the charge density, which is a function of time and position, is the vacuum permittivity, is the vacuum permeability, and J is the current density vector, also a function of time and position. Inside a linear material, Maxwell's equations change by switching the permeability and permittivity of free space with the permeability and ...
The charge due to polarization is known as bound charge, while the charge on an object produced by electrons gained or lost from outside the object is called free charge. The motion of electrons in conductive metals in a specific direction is known as electric current.