enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Solving applications dealing with non-uniform circular motion involves force analysis. With a uniform circular motion, the only force acting upon an object traveling in a circle is the centripetal force. In a non-uniform circular motion, there are additional forces acting on the object due to a non-zero tangential acceleration.

  3. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    In accordance with Newton's third law of motion, the body in curved motion exerts an equal and opposite force on the other body. This reactive force is exerted by the body in curved motion on the other body that provides the centripetal force and its direction is from that other body toward the body in curved motion. [40] [41] [42] [43]

  4. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as the angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.

  5. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    For an object in uniform circular motion, the net force acting on the object equals: [46] = ^, where is the mass of the object, is the velocity of the object and is the distance to the center of the circular path and ^ is the unit vector pointing in the radial direction outwards from the center. This means that the net force felt by the object ...

  6. Fictitious force - Wikipedia

    en.wikipedia.org/wiki/Fictitious_force

    A classic example of a fictitious force in circular motion is the experiment of rotating spheres tied by a cord and spinning around their centre of mass. In this case, the identification of a rotating, non-inertial frame of reference can be based upon the vanishing of fictitious forces.

  7. Centripetal force - Wikipedia

    en.wikipedia.org/wiki/Centripetal_force

    These results agree with those above for nonuniform circular motion. See also the article on non-uniform circular motion. If this acceleration is multiplied by the particle mass, the leading term is the centripetal force and the negative of the second term related to angular acceleration is sometimes called the Euler force. [22]

  8. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    A logical choice of generalized coordinates to describe the motion are the angles (θ, φ). Only two coordinates are needed instead of three, because the position of the bob can be parameterized by two numbers, and the constraint equation connects the three coordinates ( x , y , z ) so any one of them is determined from the other two.

  9. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    Angular speed and tangential speed on a disc Tangential speed is the speed of an object undergoing circular motion, i.e., moving along a circular path. [6] A point on the outside edge of a merry-go-round or turntable travels a greater distance in one complete rotation than a point nearer the center. Travelling a greater distance in the same ...