Search results
Results from the WOW.Com Content Network
A polyhedral graph is the graph of a simple polyhedron if it is cubic (every vertex has three edges), and it is the graph of a simplicial polyhedron if it is a maximal planar graph. For example, the tetrahedral, cubical, and dodecahedral graphs are simple; the tetrahedral, octahedral, and icosahedral graphs are simplicial.
In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is a polyhedron that bounds a convex set.
Regular polyhedron. Platonic solid: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot polyhedron (Regular star polyhedra) Small stellated dodecahedron, Great stellated dodecahedron, Great icosahedron, Great dodecahedron; Abstract regular polyhedra (Projective polyhedron)
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent . Uniform polyhedra may be regular (if also face- and edge-transitive ), quasi-regular (if also edge-transitive but not face-transitive), or semi-regular ...
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra: