enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The Hessian matrix plays an important role in Morse theory and catastrophe theory, because its kernel and eigenvalues allow classification of the critical points. [2] [3] [4] The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The ...

  3. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The Jacobian of the gradient of a scalar function of several variables has a special name: the Hessian matrix, which in a sense is the "second derivative" of the function in question. Jacobian determinant

  4. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    The main difference is that the Hessian matrix is a symmetric matrix, unlike the Jacobian when searching for zeroes. Most quasi-Newton methods used in optimization exploit this symmetry. In optimization, quasi-Newton methods (a special case of variable-metric methods) are algorithms for finding local maxima and minima of functions.

  5. Broyden's method - Wikipedia

    en.wikipedia.org/wiki/Broyden's_method

    Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration. However, computing this Jacobian can be a difficult and expensive operation; for large problems such as those involving solving the Kohn–Sham equations in quantum mechanics the number of variables can be in the hundreds of thousands. The idea behind Broyden ...

  6. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    The following test can be applied at any critical point a for which the Hessian matrix is invertible: If the Hessian is positive definite (equivalently, has all eigenvalues positive) at a, then f attains a local minimum at a. If the Hessian is negative definite (equivalently, has all eigenvalues negative) at a, then f attains a local maximum at a.

  7. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    There also exist various quasi-Newton methods, where an approximation for the Hessian (or its inverse directly) is built up from changes in the gradient. If the Hessian is close to a non-invertible matrix, the inverted Hessian can be numerically unstable and the solution may diverge. In this case, certain workarounds have been tried in the past ...

  8. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    The matrix H is known as the Hessian matrix. Although this model has better convergence properties near to the minimum, it is much worse when the parameters are far from their optimal values. Calculation of the Hessian adds to the complexity of the algorithm. This method is not in general use. Davidon–Fletcher–Powell method. This method, a ...

  9. List of calculus topics - Wikipedia

    en.wikipedia.org/wiki/List_of_calculus_topics

    Regiomontanus' angle maximization problem; Rolle's theorem; Integral calculus ... Jacobian matrix; Hessian matrix; Curvature; Green's theorem; Divergence theorem;