enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    Related to this distribution are a number of other distributions: the displaced Poisson, the hyper-Poisson, the general Poisson binomial and the Poisson type distributions. The Conway–Maxwell–Poisson distribution, a two-parameter extension of the Poisson distribution with an adjustable rate of decay.

  4. Shape of a probability distribution - Wikipedia

    en.wikipedia.org/wiki/Shape_of_a_probability...

    The shape of a distribution will fall somewhere in a continuum where a flat distribution might be considered central and where types of departure from this include: mounded (or unimodal), U-shaped, J-shaped, reverse-J shaped and multi-modal. [1] A bimodal distribution would have two high points rather than one. The shape of a distribution is ...

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    Figure 1: The left graph shows a probability density function. The right graph shows the cumulative distribution function. The value at a in the cumulative distribution equals the area under the probability density curve up to the point a. Absolutely continuous probability distributions can be described in several ways.

  6. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    If X is a binomial (n, p) random variable and if n is large and np is small then X approximately has a Poisson(np) distribution. If X is a negative binomial random variable with r large, P near 1, and r(1 − P) = λ, then X approximately has a Poisson distribution with mean λ. Consequences of the CLT:

  7. u-chart - Wikipedia

    en.wikipedia.org/wiki/U-chart

    As with the c-chart, the Poisson distribution is the basis for the chart and requires the same assumptions. The control limits for this chart type are u ¯ ± 3 u ¯ n i {\displaystyle {\bar {u}}\pm 3{\sqrt {\frac {\bar {u}}{n_{i}}}}} where u ¯ {\displaystyle {\bar {u}}} is the estimate of the long-term process mean established during control ...

  8. Shape parameter - Wikipedia

    en.wikipedia.org/wiki/Shape_parameter

    By contrast, the following continuous distributions do not have a shape parameter, so their shape is fixed and only their location or their scale or both can change. It follows that (where they exist) the skewness and kurtosis of these distribution are constants, as skewness and kurtosis are independent of location and scale parameters.

  9. Geometric Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Geometric_Poisson_distribution

    where λ is the parameter of the underlying Poisson distribution and θ is the parameter of the geometric distribution. [2] The distribution was described by George Pólya in 1930. Pólya credited his student Alfred Aeppli's 1924 dissertation as the original source. It was called the geometric Poisson distribution by Sherbrooke in 1968, who ...