Search results
Results from the WOW.Com Content Network
Physical optics is also the name of an approximation commonly used in optics, electrical engineering and applied physics.In this context, it is an intermediate method between geometric optics, which ignores wave effects, and full wave electromagnetism, which is a precise theory.
Fourier optics begins with the homogeneous, scalar wave equation (valid in source-free regions): (,) = where is the speed of light and u(r,t) is a real-valued Cartesian component of an electromagnetic wave propagating through a free space (e.g., u(r, t) = E i (r, t) for i = x, y, or z where E i is the i-axis component of an electric field E in the Cartesian coordinate system).
In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.
In geometrical optics, light is considered to travel in straight lines, while in physical optics, light is considered as an electromagnetic wave. Geometrical optics can be viewed as an approximation of physical optics that applies when the wavelength of the light used is much smaller than the size of the optical elements in the system being ...
Four-wave mixing (FWM) is an intermodulation phenomenon in nonlinear optics, whereby interactions between two or three wavelengths produce two or one new wavelengths. It is similar to the third-order intercept point in electrical systems. Four-wave mixing can be compared to the intermodulation distortion in standard
Rejecting Descartes' solution, Pierre de Fermat arrived at the same solution based solely on his principle of least time. Descartes assumed the speed of light was infinite, yet in his derivation of Snell's law he also assumed the denser the medium, the greater the speed of light. Fermat supported the opposing assumptions, i.e., the speed of ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
It is the evanescent wave which is used to achieve increased excitation of the fluorophores close to the surface of the sample, and diminished excitation of superfluous fluorophores within solution. For practical purposes, in objective based TIRF, medium 1 is typically a high refractive index glass coverslip, and medium 2 is the sample in ...