Search results
Results from the WOW.Com Content Network
In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows.
For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions). The hyperbolic functions take a real argument called a hyperbolic angle. The magnitude of a hyperbolic angle is the area of its hyperbolic sector to xy = 1.
and defining a unit hyperbola as = with its corresponding parameterized solution set = and = , and by letting < (the hyperbolic angle), we arrive at the result of =. Just as the circular angle is the length of a circular arc using the Euclidean metric, the hyperbolic angle is the length of a hyperbolic arc using the Minkowski metric.
A further practical example of hyperbolic growth can be found in enzyme kinetics. When the rate of reaction (termed velocity) between an enzyme and substrate is plotted against various concentrations of the substrate, a hyperbolic plot is obtained for many simpler systems. When this happens, the enzyme is said to follow Michaelis-Menten kinetics.
In all these formulae (h, k) are the center coordinates of the hyperbola, a is the length of the semi-major axis, and b is the length of the semi-minor axis. Note that in the rational forms of these formulae, the points (−a, 0) and (0 , −a), respectively, are not represented by a real value of t, but are the limit of x and y as t tends to ...
Pell's equation for n = 2 and six of its integer solutions. Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form =, where n is a given positive nonsquare integer, and integer solutions are sought for x and y.
For example, when a = 0, then (b,c) is a point on the standard hyperbola. More generally, there is a hypersurface in M(2,R) of hyperbolic units, any one of which serves in a basis to represent the split-complex numbers as a subring of M(2,R).
A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.