enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows.

  3. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions). The hyperbolic functions take a real argument called a hyperbolic angle. The magnitude of a hyperbolic angle is the area of its hyperbolic sector to xy = 1.

  4. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    and defining a unit hyperbola as = with its corresponding parameterized solution set = ⁡ and = ⁡, and by letting < (the hyperbolic angle), we arrive at the result of =. Just as the circular angle is the length of a circular arc using the Euclidean metric, the hyperbolic angle is the length of a hyperbolic arc using the Minkowski metric.

  5. Hyperbolic growth - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_growth

    A further practical example of hyperbolic growth can be found in enzyme kinetics. When the rate of reaction (termed velocity) between an enzyme and substrate is plotted against various concentrations of the substrate, a hyperbolic plot is obtained for many simpler systems. When this happens, the enzyme is said to follow Michaelis-Menten kinetics.

  6. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    In all these formulae (h, k) are the center coordinates of the hyperbola, a is the length of the semi-major axis, and b is the length of the semi-minor axis. Note that in the rational forms of these formulae, the points (−a, 0) and (0 , −a), respectively, are not represented by a real value of t, but are the limit of x and y as t tends to ...

  7. Pell's equation - Wikipedia

    en.wikipedia.org/wiki/Pell's_equation

    Pell's equation for n = 2 and six of its integer solutions. Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form =, where n is a given positive nonsquare integer, and integer solutions are sought for x and y.

  8. Split-complex number - Wikipedia

    en.wikipedia.org/wiki/Split-complex_number

    For example, when a = 0, then (b,c) is a point on the standard hyperbola. More generally, there is a hypersurface in M(2,R) of hyperbolic units, any one of which serves in a basis to represent the split-complex numbers as a subring of M(2,R).

  9. Hyperbolic sector - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_sector

    A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.