Search results
Results from the WOW.Com Content Network
Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics , a sequence of random variables is homoscedastic ( / ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k / ) if all its random variables have the same finite variance ; this is also known as homogeneity of variance.
Heteroscedasticity often occurs when there is a large difference among the sizes of the observations. A classic example of heteroscedasticity is that of income versus expenditure on meals. A wealthy person may eat inexpensive food sometimes and expensive food at other times. A poor person will almost always eat inexpensive food.
An alternative to the White test is the Breusch–Pagan test, where the Breusch-Pagan test is designed to detect only linear forms of heteroskedasticity. Under certain conditions and a modification of one of the tests, they can be found to be algebraically equivalent.
The rabbit test became a widely used bioassay (animal-based test) to test for pregnancy. The term "rabbit test" was first recorded in 1949, and was the origin of a common euphemism, "the rabbit died", for a positive pregnancy test. [4] The phrase was, in fact, based on a common misconception about the test.
The test procedure due to M.S.E (Mean Square Error/Estimator) Bartlett test is represented here. This test procedure is based on the statistic whose sampling distribution is approximately a Chi-Square distribution with ( k − 1) degrees of freedom, where k is the number of random samples, which may vary in size and are each drawn from ...
Statistical testing for a non-zero heterogeneity variance is often done based on Cochran's Q [13] or related test procedures. This common procedure however is questionable for several reasons, namely, the low power of such tests [14] especially in the very common case of only few estimates being combined in the analysis, [15] [7] as well as the specification of homogeneity as the null ...
Glejser test for heteroscedasticity, developed in 1969 by Herbert Glejser, is a statistical test, which regresses the residuals on the explanatory variable that is thought to be related to the heteroscedastic variance. [1]
If the test statistic has a p-value below an appropriate threshold (e.g. p < 0.05) then the null hypothesis of homoskedasticity is rejected and heteroskedasticity assumed. If the Breusch–Pagan test shows that there is conditional heteroskedasticity, one could either use weighted least squares (if the source of heteroskedasticity is known) or ...