enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]

  3. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    For example, taking the statement x + 1 = 0, if x is substituted with 1, this implies 1 + 1 = 2 = 0, which is false, which implies that if x + 1 = 0 then x cannot be 1. If x and y are integers, rationals, or real numbers, then xy = 0 implies x = 0 or y = 0. Consider abc = 0. Then, substituting a for x and bc for y, we learn a = 0 or bc = 0.

  4. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Most but not all overdetermined systems, when constructed with random coefficients, are inconsistent. For example, the system x 3 – 1 = 0, x 2 – 1 = 0 is overdetermined (having two equations but only one unknown), but it is not inconsistent since it has the solution x = 1.

  5. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    When the denominator b(x) is monic and linear, that is, b(x) = x − c for some constant c, then the polynomial remainder theorem asserts that the remainder of the division of a(x) by b(x) is the evaluation a(c). [18] In this case, the quotient may be computed by Ruffini's rule, a special case of synthetic division. [20]

  6. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.

  7. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.

  8. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    x 3 has been divided leaving no remainder, and can therefore be marked as used by crossing it out. The result x 2 is then multiplied by the second term in the divisor −3 = −3x 2. Determine the partial remainder by subtracting −2x 2 − (−3x 2) = x 2. Mark −2x 2 as used and place the new remainder x 2 above it.

  9. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    Input: initial guess x (0) to the solution, (diagonal dominant) matrix A, right-hand side vector b, convergence criterion Output: solution when convergence is reached Comments: pseudocode based on the element-based formula above k = 0 while convergence not reached do for i := 1 step until n do σ = 0 for j := 1 step until n do if j ≠ i then ...