Search results
Results from the WOW.Com Content Network
The Jeans instability is a concept in astrophysics that describes an instability that leads to the gravitational collapse of a cloud of gas or dust. [1] It causes the collapse of interstellar gas clouds and subsequent star formation. It occurs when the internal gas pressure is not strong enough to prevent the gravitational collapse of a region ...
Gravitational collapse of a massive star, resulting in a Type II supernova. Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. [1] Gravitational collapse is a fundamental mechanism for structure formation in the universe.
The most basic gravitational stability analysis is the Jeans criteria, which addresses the balance between self-gravity and thermal pressure in a gas. In terms of the two above stability conditions, the system is stable if: i) thermal pressure balances the force of gravity, and ii) if the system is compressed slightly, the outward pressure ...
Gas cloud being ripped apart by black hole at the centre of the Milky Way (observations from 2006, 2010 and 2013 are shown in blue, green and red, respectively). [128] Gravitational collapse occurs when an object's internal pressure is insufficient to resist the object's own gravity.
The Oppenheimer–Snyder model of continued gravitational collapse is described by the line element [13] = + (+ +) The quantities appearing in this expression are as follows: The coordinates are ( τ , R , θ , ϕ ) {\displaystyle (\tau ,R,\theta ,\phi )} where θ , ϕ {\displaystyle \theta ,\phi } are coordinates for the 2-sphere.
Silicon burning begins when gravitational contraction raises the star's core temperature to 2.7–3.5 billion kelvins . The exact temperature depends on mass. When a star has completed the silicon-burning phase, no further fusion is possible. The star catastrophically collapses and may explode in what is known as a Type II supernova.
In a degenerate gas, all quantum states are filled up to the Fermi energy. Most stars are supported against their own gravitation by normal thermal gas pressure, while in white dwarf stars the supporting force comes from the degeneracy pressure of the electron gas in their interior. In neutron stars, the degenerate particles are neutrons.
In 2023, the observation of the highly energetic, non-quasar transient event AT2021lwx was published with an extremely strong emission from mid-infrared to X-ray wavelengths and an overall energy of 1.5 10 46 Joule. [12] This object is not thought to be a hypernova; instead, it is likely to be a huge gas cloud being absorbed by a massive black ...