enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Class number formula - Wikipedia

    en.wikipedia.org/wiki/Class_number_formula

    The idea of the proof of the class number formula is most easily seen when K = Q(i).In this case, the ring of integers in K is the Gaussian integers.. An elementary manipulation shows that the residue of the Dedekind zeta function at s = 1 is the average of the coefficients of the Dirichlet series representation of the Dedekind zeta function.

  3. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    where ⁡ is the interquartile range of the data and is the number of observations in the sample . In fact if the normal density is used the factor 2 in front comes out to be ∼ 2.59 {\displaystyle \sim 2.59} , [ 4 ] but 2 is the factor recommended by Freedman and Diaconis.

  4. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    This formula is also the basis for the Freedman–Diaconis rule. By taking a normal reference i.e. assuming that f ( x ) {\displaystyle f(x)} is a normal distribution , the equation for h ∗ {\displaystyle h^{*}} becomes

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().

  6. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    To determine an appropriate sample size n for estimating proportions, the equation below can be solved, where W represents the desired width of the confidence interval. The resulting sample size formula, is often applied with a conservative estimate of p (e.g., 0.5): = /

  7. Linear discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Linear_discriminant_analysis

    For instance, the classes may be partitioned, and a standard Fisher discriminant or LDA used to classify each partition. A common example of this is "one against the rest" where the points from one class are put in one group, and everything else in the other, and then LDA applied. This will result in C classifiers, whose results are combined.

  8. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".

  9. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    Sturges's rule [1] is a method to choose the number of bins for a histogram.Given observations, Sturges's rule suggests using ^ = + ⁡ bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method.