enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Effective mass (spring–mass system) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(spring...

    The effective mass of the spring in a spring-mass system when using a heavy spring (non-ideal) of uniform linear density is of the mass of the spring and is independent of the direction of the spring-mass system (i.e., horizontal, vertical, and oblique systems all have the same effective mass). This is because external acceleration does not ...

  3. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  4. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    The time period is able to be calculated by = where l is the distance from rotation to center of mass of object undergoing SHM and g being gravitational acceleration. This is analogous to the mass-spring system.

  5. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  6. Mass-spring-damper model - Wikipedia

    en.wikipedia.org/wiki/Mass-spring-damper_model

    Classic model used for deriving the equations of a mass spring damper model. The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity.

  7. Spring (device) - Wikipedia

    en.wikipedia.org/wiki/Spring_(device)

    Since force is equal to mass, m, times acceleration, a, the force equation for a spring obeying Hooke's law looks like: = =. The displacement, x, as a function of time. The amount of time that passes between peaks is called the period.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is Δ E p = 1 2 k ( r 2 − r 1 ) 2 {\displaystyle \Delta E_{p}={\frac {1}{2}}k(r_{2}-r_{1})^{2}} where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.