Search results
Results from the WOW.Com Content Network
In physics and mathematics, in the area of dynamical systems, an elastic pendulum [1] [2] (also called spring pendulum [3] [4] or swinging spring) is a physical system where a piece of mass is connected to a spring so that the resulting motion contains elements of both a simple pendulum and a one-dimensional spring-mass system. [2]
The effective mass of the spring in a spring-mass system when using a heavy spring (non-ideal) of uniform linear density is of the mass of the spring and is independent of the direction of the spring-mass system (i.e., horizontal, vertical, and oblique systems all have the same effective mass). This is because external acceleration does not ...
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The kinetic energy of the system is: = (˙ + ˙) where is the mass of the bobs, is the length of the strings, and , are the angular displacements of the two bobs from equilibrium. The potential energy of the system is: E p = m g L ( 2 − cos θ 1 − cos θ 2 ) + 1 2 k L 2 ( θ 2 − θ 1 ) 2 {\displaystyle E_{\text{p}}=mgL(2-\cos ...
In the spring-mass system, oscillations occur because, at the static equilibrium displacement, the mass has kinetic energy which is converted into potential energy stored in the spring at the extremes of its path. The spring-mass system illustrates some common features of oscillation, namely the existence of an equilibrium and the presence of a ...
A passive isolation system, such as a shock mount, in general contains mass, spring, and damping elements and moves as a harmonic oscillator. The mass and spring stiffness dictate a natural frequency of the system. Damping causes energy dissipation and has a secondary effect on natural frequency. Passive Vibration Isolation
Underdamped spring–mass system with ζ < 1. In physical systems, damping is the loss of energy of an oscillating system by dissipation. [1] [2] Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. [3]
In a mass–spring system, with mass m and spring stiffness k, the natural angular frequency can be calculated as: = In an electrical network , ω is a natural angular frequency of a response function f ( t ) if the Laplace transform F ( s ) of f ( t ) includes the term Ke − st , where s = σ + ω i for a real σ , and K ≠ 0 is a constant ...