enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    The isentropic efficiency is . The variation of fluid density for compressible flows requires attention to density and other fluid property relationships. The fluid equation of state, often unimportant for incompressible flows, is vital in the analysis of compressible flows. Also, temperature variations for compressible flows are usually ...

  3. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    Most steady-flow devices operate under adiabatic conditions, and the ideal process for these devices is the isentropic process. The parameter that describes how efficiently a device approximates a corresponding isentropic device is called isentropic or adiabatic efficiency. [12] Isentropic efficiency of turbines:

  4. Rocket engine nozzle - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine_nozzle

    Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.

  5. Non ideal compressible fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Non_ideal_compressible...

    In the classical regime, expansions are smooth isentropic processes, while compressions occur through shock waves, which are discontinuities in the flow. If gas-dynamics is inverted, the opposite occurs, namely rarefaction shock waves are physically admissible and compressions occur through smooth isentropic processes. [24]

  6. Steam turbine - Wikipedia

    en.wikipedia.org/wiki/Steam_turbine

    To measure how well a turbine is performing we can look at its isentropic efficiency. This compares the actual performance of the turbine with the performance that would be achieved by an ideal, isentropic, turbine. [29] When calculating this efficiency, heat lost to the surroundings is assumed to be zero.

  7. Compounding of steam turbines - Wikipedia

    en.wikipedia.org/wiki/Compounding_of_steam_turbines

    The moving blades are keyed to the turbine shaft and the fixed blades are fixed to the casing. The high pressure steam coming from the boiler is expanded in the nozzle first. The Nozzle converts the pressure energy of the steam into kinetic energy. The total enthalpy drop and hence the pressure drop occurs in the nozzle.

  8. AOL Mail

    mail.aol.com/?rp=webmail-std/en-us/basic

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Losses in steam turbines - Wikipedia

    en.wikipedia.org/wiki/Losses_in_steam_turbines

    In practice, the flow of steam through a nozzle is not isentropic, but accompanied with losses which decrease the kinetic energy of steam coming out of the nozzle. The decrease in kinetic energy is due to: viscous forces between steam particles, heat loss from steam before entering the nozzle, deflection of flow in the nozzle,