Search results
Results from the WOW.Com Content Network
Figure 1: A Converging Nozzle. Consider a converging nozzle connecting a reservoir with a receiver. If the reservoir pressure is held constant and the receiver pressure reduced, the Mach number at the exit of the nozzle will increase until M e = 1 is reached, indicated by the left curve in figure 2.
Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =. Specific impulse and ...
A sub-plot shows the variation of isentropic (i.e. adiabatic) efficiency with flow, at constant speed. Some maps use polytropic efficiency. Alternatively, for illustrative purposes, efficiency contours are sometimes cross-plotted onto the main map. Note that the locus of peak efficiency exhibits a slight kink in its upward trend.
It is done by the fixed blades which act as nozzles. The steam expands equally in all rows of fixed blade. The steam coming from the boiler is fed to the first set of fixed blades i.e. the nozzle ring. The steam is partially expanded in the nozzle ring. Hence, there is a partial decrease in pressure of the incoming steam.
Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
The efficiency is a measure of the losses due to friction, non-axial divergence as well as leakage in C-D nozzles. [ 6 ] Airbreathing engines create forward thrust on the airframe by imparting a net rearward momentum to the exhaust gas.
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
For any chemical rocket engine, the momentum transfer efficiency depends heavily on the effectiveness of the nozzle; the nozzle is the primary means of converting reactant energy (e.g. thermal or pressure energy) into a flow of momentum all directed the same way. Therefore, nozzle shape and effectiveness has a great impact on total momentum ...