Search results
Results from the WOW.Com Content Network
The formula for a given N-Day period and for a given data series is: [2] [3] = = + (()) = (,) The idea is do a regular exponential moving average (EMA) calculation but on a de-lagged data instead of doing it on the regular data.
Kingman's approximation states: () (+)where () is the mean waiting time, τ is the mean service time (i.e. μ = 1/τ is the service rate), λ is the mean arrival rate, ρ = λ/μ is the utilization, c a is the coefficient of variation for arrivals (that is the standard deviation of arrival times divided by the mean arrival time) and c s is the coefficient of variation for service times.
In queueing theory, a discipline within the mathematical theory of probability, the Pollaczek–Khinchine formula states a relationship between the queue length and service time distribution Laplace transforms for an M/G/1 queue (where jobs arrive according to a Poisson process and have general service time distribution). The term is also used ...
Delay calculation is the term used in integrated circuit design for the calculation of the gate delay of a single logic gate and the wires attached to it. By contrast, static timing analysis computes the delays of entire paths, using delay calculation to determine the delay of each gate and wire.
X-12-ARIMA can be used together with many statistical packages, such as SAS in its econometric and time series (ETS) package, R in its (seasonal) package, [6] Gretl or EViews which provides a graphical user interface for X-12-ARIMA, and NumXL which avails X-12-ARIMA functionality in Microsoft Excel. [7] There is also a version for MATLAB. [8]
The CRAN task view on Time Series contains links to most of these. Mathematica has a complete library of time series functions including ARMA. [11] MATLAB includes functions such as arma, ar and arx to estimate autoregressive, exogenous autoregressive and ARMAX models. See System Identification Toolbox and Econometrics Toolbox for details.
Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail
In mathematical queueing theory, Little's law (also result, theorem, lemma, or formula [1] [2]) is a theorem by John Little which states that the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system.