enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vapour-pressure deficit - Wikipedia

    en.wikipedia.org/wiki/Vapour-pressure_deficit

    Global distribution of Vapour-pressure deficit averaged over the years 1981-2010 from the CHELSA-BIOCLIM+ data set [1] Vapour pressure-deficit, or VPD, is the difference (deficit) between the amount of moisture in the air and how much moisture the air can hold when it is saturated. Once air becomes saturated, water will condense to form clouds ...

  3. Penman–Monteith equation - Wikipedia

    en.wikipedia.org/wiki/Penman–Monteith_equation

    δe = vapor pressure deficit (Pa) g a = Conductivity of air, atmospheric conductance (m s −1) g s = Conductivity of stoma, surface or stomatal conductance (m s −1) γ = Psychrometric constant (γ ≈ 66 Pa K −1) Note: Often, resistances are used rather than conductivities.

  4. Penman equation - Wikipedia

    en.wikipedia.org/wiki/Penman_equation

    The Penman equation describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs ...

  5. Tetens equation - Wikipedia

    en.wikipedia.org/wiki/Tetens_equation

    where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]

  6. Kelvin equation - Wikipedia

    en.wikipedia.org/wiki/Kelvin_equation

    The vapour pressure above the curved interface is then higher than that for the planar interface. This picture provides a simple conceptual basis for the Kelvin equation. The change in vapor pressure can be attributed to changes in the Laplace pressure. When the Laplace pressure rises in a droplet, the droplet tends to evaporate more easily.

  7. Vapor pressure - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressure

    This is illustrated in the vapor pressure chart (see right) that shows graphs of the vapor pressures versus temperatures for a variety of liquids. [7] At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [1] 760 Torr, 101.325 kPa, or 14.69595 psi.

  8. Atmospheric thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_thermodynamics

    Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...

  9. Lee–Kesler method - Wikipedia

    en.wikipedia.org/wiki/Lee–Kesler_method

    The correct result would be P = 101.325 kPa, the normal (atmospheric) pressure. The deviation is −1.63 kPa or −1.61 %. The deviation is −1.63 kPa or −1.61 %. It is important to use the same absolute units for T and T c as well as for P and P c .