Search results
Results from the WOW.Com Content Network
Unlike the contrapositive, the inverse's truth value is not at all dependent on whether or not the original proposition was true, as evidenced here. Conversion (the converse), "If I wear my coat, then it is raining." The converse is actually the contrapositive of the inverse, and so always has the same truth value as the inverse (which as ...
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of ...
The inverse and the converse of a conditional are logically equivalent to each other, just as the conditional and its contrapositive are logically equivalent to each other. [1] But the inverse of a conditional cannot be inferred from the conditional itself (e.g., the conditional might be true while its inverse might be false [2]). For example ...
converse The statement formed by reversing the antecedent and consequent of a conditional statement, not necessarily maintaining logical equivalence. converse domain In set theory and logic, the set of all elements that are related to any element of a given set under a specific relation. [72] converse barcan formula
Given a type A statement, "All S are P.", one can make the immediate inference that "All non-P are non-S" which is the contrapositive of the given statement. Given a type O statement, "Some S are not P.", one can make the immediate inference that "Some non-P are not non-S" which is the contrapositive of the given statement.
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...
Proof by contraposition infers the statement "if p then q" by establishing the logically equivalent contrapositive statement: "if not q then not p". For example, contraposition can be used to establish that, given an integer x {\displaystyle x} , if x 2 {\displaystyle x^{2}} is even, then x {\displaystyle x} is even:
In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of and is sometimes expressed as , ::, , or , depending on the notation being used.