enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.

  3. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant.This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.

  4. Equilibrium constant - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_constant

    Thermodynamic equilibrium is characterized by the free energy for the whole (closed) system being a minimum. For systems at constant temperature and pressure the Gibbs free energy is minimum. [9] The slope of the reaction free energy with respect to the extent of reaction, ξ, is zero when the free energy is at its minimum value.

  5. Binding constant - Wikipedia

    en.wikipedia.org/wiki/Binding_constant

    Once chemical activity is factored into the correct form of the equation, a dimensionless value is obtained. For the binding of receptor and ligand molecules in solution, the molar Gibbs free energy Δ G , or the binding affinity is related to the dissociation constant K d via

  6. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    In 1884, Jacobus van 't Hoff proposed the Van 't Hoff equation describing the temperature dependence of the equilibrium constant for a reversible reaction: ⁡ = where ΔU is the change in internal energy, K is the equilibrium constant of the reaction, R is the universal gas constant, and T is thermodynamic temperature.

  7. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G (Gibbs free energy) or H . [1] The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy , and volume for a closed system in ...

  8. Free-energy relationship - Wikipedia

    en.wikipedia.org/wiki/Free-energy_relationship

    The Edwards equation relates the nucleophilic power to polarisability and basicity. The Marcus equation is an example of a quadratic free-energy relationship (QFER). [citation needed] IUPAC has suggested that this name should be replaced by linear Gibbs energy relation, but at present there is little sign of acceptance of this change. [1]

  9. Determination of equilibrium constants - Wikipedia

    en.wikipedia.org/wiki/Determination_of...

    The thermodynamic properties of cooperativity have been studied in order to define mathematical parameters that distinguish positive or negative cooperativity. The traditional Gibbs free energy equation states: = . However, to quantify cooperativity in a host–guest system, the binding energy needs to be considered.