Ad
related to: finding remainder when dividing polynomialseducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Activities & Crafts
Search results
Results from the WOW.Com Content Network
In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials.It states that, for every number , any polynomial is the sum of () and the product by of a polynomial in of degree less than the degree of .
Polynomial long division can be used to find the equation of the line that is tangent to the graph of the function defined by the polynomial P(x) at a particular point x = r. [3] If R ( x ) is the remainder of the division of P ( x ) by ( x – r ) 2 , then the equation of the tangent line at x = r to the graph of the function y = P ( x ) is y ...
The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
Finally, dividing r 0 (x) by r 1 (x) yields a zero remainder, indicating that r 1 (x) is the greatest common divisor polynomial of a(x) and b(x), consistent with their factorization. Many of the applications described above for integers carry over to polynomials. [ 139 ]
As a consequence of the polynomial remainder theorem, the entries in the third row are the coefficients of the second-degree polynomial, the quotient of () on division by . The remainder is 5 . This makes Horner's method useful for polynomial long division .
Its existence is based on the following theorem: Given two univariate polynomials a and b ≠ 0 defined over a field, there exist two polynomials q (the quotient) and r (the remainder) which satisfy = + and < (), where "deg(...)" denotes the degree and the degree of the zero polynomial is defined as being negative.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Ad
related to: finding remainder when dividing polynomialseducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch