enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  3. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    Spectral graph theory is the branch of graph theory that uses spectra to analyze graphs. See also spectral expansion. split 1. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. A related class of graphs, the double split graphs, are used in the proof of the strong perfect graph theorem.

  4. Component (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Component_(graph_theory)

    Every graph is the disjoint union of its components. [2] Additional examples include the following special cases: In an empty graph, each vertex forms a component with one vertex and zero edges. [3] More generally, a component of this type is formed for every isolated vertex in any graph. [4]

  5. Two-graph - Wikipedia

    en.wikipedia.org/wiki/Two-graph

    In a given switching class of graphs of a regular two-graph, let Γ x be the unique graph having x as an isolated vertex (this always exists, just take any graph in the class and switch the open neighborhood of x) without the vertex x. That is, the two-graph is the extension of Γ x by x. In the first example above of a regular two-graph, Γ x ...

  6. Threshold graph - Wikipedia

    en.wikipedia.org/wiki/Threshold_graph

    An example of a threshold graph. In graph theory, a threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations: Addition of a single isolated vertex to the graph. Addition of a single dominating vertex to the graph, i.e. a single vertex that is connected to all other vertices.

  7. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater. More precisely, any graph G (complete or not) is said to be k -vertex-connected if it contains at least k + 1 vertices, but does not contain a set of k − 1 vertices whose removal disconnects the graph; and κ ( G ) is defined as the largest k such ...

  8. Berge's theorem - Wikipedia

    en.wikipedia.org/wiki/Berge's_theorem

    Take a graph G and let M and M ′ be two matchings in G. Let G ′ be the resultant graph from taking the symmetric difference of M and M ′; i.e. (M - M ′) ∪ (M ′ - M). G ′ will consist of connected components that are one of the following: An isolated vertex. An even cycle whose edges alternate between M and M ′.

  9. Squaregraph - Wikipedia

    en.wikipedia.org/wiki/Squaregraph

    In graph theory, a branch of mathematics, a squaregraph is a type of undirected graph that can be drawn in the plane in such a way that every bounded face is a quadrilateral and every vertex with three or fewer neighbors is incident to an unbounded face.