Search results
Results from the WOW.Com Content Network
Parameters of horizontal drainage Parameters of vertical drainage. The subsurface field drainage systems consist of horizontal or slightly sloping channels made in the soil; they can be open ditches, trenches, filled with brushwood and a soil cap, filled with stones and a soil cap, buried pipe drains, tile drains, or mole drains, but they can ...
In geotechnical engineering, watertable control is the practice of controlling the height of the water table by drainage.Its main applications are in agricultural land (to improve the crop yield using agricultural drainage systems) and in cities to manage the extensive underground infrastructure that includes the foundations of large buildings, underground transit systems, and extensive ...
Subsurface drainage: Built by burying pipes underground to remove excess water from the soil profile. Subsurface drainage is widely used by farmers. It has many advantages: [5] It increases soil humidity and leads to better crop yields. It stops the accumulation of salts and gives farmers more flexibility to plant different types of crops.
Map of a well field for subsurface drainage with radial flow across concentrical cylinders representing the equipotentials. Both systems serve the same purposes, namely water table control and soil salinity control. Both systems can facilitate the reuse of drainage water (e.g. for irrigation), but wells offer more flexibility.
Agricultural land drainage has agricultural, environmental, hydrological, engineering, economical, social and socio-political aspects (Figure 1). All these aspects can be subject of drainage research. The aim (objective, target) of agricultural land drainage is the optimized agricultural production related to: reclamation of agricultural land
In the same fashion, the well drainage requirement can be found from well discharge (Wel) in the geohydrologic water balance or the overall water balance. The subsurface drainage requirement and well drainage requirement play an important role in the design of agricultural drainage systems (references:, [4] [5]).
The causes of salty soils are often associated with high water tables, which are caused by a lack of natural subsurface drainage to the underground. Poor subsurface drainage may be caused by insufficient transport capacity of the aquifer or because water cannot exit the aquifer, for instance, if the aquifer is situated in a topographical ...
While this is a lesser issue for surface irrigation compared to other irrigation methods (due to the comparatively high leaching fraction), lack of subsurface drainage may restrict the leaching of salts from the soil. This can be remedied by drainage and soil salinity control through flushing.