Search results
Results from the WOW.Com Content Network
The code rate of a convolutional code is commonly modified via symbol puncturing. For example, a convolutional code with a 'mother' code rate / = / may be punctured to a higher rate of, for example, / simply by not transmitting a portion of code symbols. The performance of a punctured convolutional code generally scales well with the amount of ...
Fig 1 is an example of a SCCC. Fig. 1. SCCC Encoder. The example encoder is composed of a 16-state outer convolutional code and a 2-state inner convolutional code linked by an interleaver. The natural code rate of the configuration shown is 1/4, however, the inner and/or outer codes may be punctured to achieve higher code rates as needed.
Turbo codes, as described first in 1993, implemented a parallel concatenation of two convolutional codes, with an interleaver between the two codes and an iterative decoder that passes information forth and back between the codes. [6] This design has a better performance than any previously conceived concatenated codes.
A convolutional code that is terminated is also a 'block code' in that it encodes a block of input data, but the block size of a convolutional code is generally arbitrary, while block codes have a fixed size dictated by their algebraic characteristics. Types of termination for convolutional codes include "tail-biting" and "bit-flushing".
An example of a convolutional interleaver An example of a deinterleaver Efficiency of cross interleaver ( γ {\displaystyle \gamma } ): It is found by taking the ratio of burst length where decoder may fail to the interleaver memory.
Under this definition codes such as turbo codes, terminated convolutional codes and other iteratively decodable codes (turbo-like codes) would also be considered block codes. A non-terminated convolutional encoder would be an example of a non-block (unframed) code, which has memory and is instead classified as a tree code.
LDPC codes functionally are defined by a sparse parity-check matrix. This sparse matrix is often randomly generated, subject to the sparsity constraints—LDPC code construction is discussed later. These codes were first designed by Robert Gallager in 1960. [5] Below is a graph fragment of an example LDPC code using Forney's factor graph notation.
This algorithm is critical to modern iteratively-decoded error-correcting codes, including turbo codes and low-density parity-check codes. Steps involved [ edit ]