enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0. A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer.

  3. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see polezero plot). Evans also invented in 1948 an analog computer to compute root loci, called a "Spirule" (after "spiral" and "slide rule"); it found wide use before the advent of digital computers.

  4. Pole–zero plot - Wikipedia

    en.wikipedia.org/wiki/Polezero_plot

    A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or communications channel. By convention, the poles of the system are indicated in the plot by an X while the zeros are indicated by a circle or O.

  5. Impulse invariance - Wikipedia

    en.wikipedia.org/wiki/Impulse_invariance

    If the system function has zeros as well as poles, they can be mapped the same way, but the result is no longer an impulse invariance result: the discrete-time impulse response is not equal simply to samples of the continuous-time impulse response. This method is known as the matched Z-transform method, or polezero mapping.

  6. Selberg zeta function - Wikipedia

    en.wikipedia.org/wiki/Selberg_zeta_function

    For any hyperbolic surface of finite area there is an associated Selberg zeta-function; this function is a meromorphic function defined in the complex plane. The zeta function is defined in terms of the closed geodesics of the surface. The zeros and poles of the Selberg zeta-function, Z(s), can be described in terms of spectral data of the surface.

  7. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding

  8. Dirichlet eta function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_eta_function

    The zeros of the eta function include all the zeros of the zeta function: the negative even integers (real equidistant simple zeros); the zeros along the critical line, none of which are known to be multiple and over 40% of which have been proven to be simple, and the hypothetical zeros in the critical strip but not on the critical line, which if they do exist must occur at the vertices of ...

  9. Argument principle - Wikipedia

    en.wikipedia.org/wiki/Argument_principle

    The simple contour C (black), the zeros of f (blue) and the poles of f (red). Here we have ′ () =. In complex analysis, the argument principle (or Cauchy's argument principle) is a theorem relating the difference between the number of zeros and poles of a meromorphic function to a contour integral of the function's logarithmic derivative.