Search results
Results from the WOW.Com Content Network
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e. color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
Homogenization of tissue in solution is often performed simultaneously with cell lysis.To prevent lysis however, the tissue (or collection of cells, e.g. from cell culture) can be kept at temperatures slightly above zero to prevent autolysis, and in an isotonic solution to prevent osmotic damage.
Biotic homogenization is the process by which two or more spatially distributed ecological communities become increasingly similar over time. This process may be genetic, taxonomic, or functional, and it leads to a loss of beta (β) diversity. [1]
This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms.It is intended as introductory material for novices; for more specific and technical definitions from sub-disciplines and related fields, see Glossary of cell biology, Glossary of genetics, Glossary of evolutionary biology, Glossary of ecology ...
Homogenization (biology), a process that involves breaking apart cells — releasing organelles and cytoplasm; Homogenization (climate), the process of removing non-climatic changes from climate data; Milk#Creaming and homogenization, process to prevent separation of the cream; Species homogeneity, all of the same or similar kind or nature
Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair (HDR), which requires a homologous sequence to guide repair.
The term was first applied to biology in a non-evolutionary context by the anatomist Richard Owen in 1843. Homology was later explained by Charles Darwin's theory of evolution in 1859, but had been observed before this from Aristotle's biology onwards, and it was explicitly analysed by Pierre Belon in 1555.
Five particular nitrogenous bases – adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U) – are especially relevant to biology because they are components of nucleotides, which are the primary monomers that make up nucleic acids. non-canonical amino acid (ncAA) Also non-standard amino acid.