Search results
Results from the WOW.Com Content Network
Liquid nitrogen, a colourless fluid resembling water in appearance, but with 80.8% of the density (the density of liquid nitrogen at its boiling point is 0.808 g/mL), is a common cryogen. [50] Solid nitrogen has many crystalline modifications.
The Gas composition of any gas can be characterised by listing the pure substances it contains, and stating for each substance its proportion of the gas mixture's molecule count.Nitrogen N 2 78.084 Oxygen O 2 20.9476 Argon Ar 0.934 Carbon Dioxide CO 2 0.0314
vapour density = molar mass of gas / molar mass of H 2 vapour density = molar mass of gas / 2.01568 vapour density = 1 ⁄ 2 × molar mass (and thus: molar mass = ~2 × vapour density) For example, vapour density of mixture of NO 2 and N 2 O 4 is 38.3. Vapour density is a dimensionless quantity. Vapour density = density of gas / density of ...
Nitrogen dioxide is a reddish-brown gas with a pungent, acrid odor above 21.2 °C (70.2 °F; 294.3 K) and becomes a yellowish-brown liquid below 21.2 °C (70.2 °F; 294.3 K). It forms an equilibrium with its dimer , dinitrogen tetroxide ( N 2 O 4 ), and converts almost entirely to N 2 O 4 below −11.2 °C (11.8 °F; 261.9 K).
Liquid nitrogen is a compact and readily transported source of dry nitrogen gas, as it does not require pressurization. Further, its ability to maintain temperatures far below the freezing point of water, specific heat of 1040 J ⋅kg -1 ⋅K -1 and heat of vaporization of 200 kJ⋅kg -1 makes it extremely useful in a wide range of applications ...
Using the number density of an ideal gas at 0 °C and 1 atm as a yardstick: n 0 = 1 amg = 2.686 7774 × 10 25 m −3 is often introduced as a unit of number density, for any substances at any conditions (not necessarily limited to an ideal gas at 0 °C and 1 atm). [3]
The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.
The term inert gas is context-dependent because several of the inert gases, including nitrogen and carbon dioxide, can be made to react under certain conditions. [1] [2] Purified argon gas is the most commonly used inert gas due to its high natural abundance (78.3% N 2, 1% Ar in air) [3] and low relative cost.