Search results
Results from the WOW.Com Content Network
Pyrrole is an extremely weak base for an amine, with a conjugate acid pK a of −3.8. The most thermodynamically stable pyrrolium cation (C 4 H 6 N +) is formed by protonation at the 2 position. Substitution of pyrrole with alkyl substituents provides a more basic molecule—for example, tetramethylpyrrole has a conjugate acid pK a of +3.7.
The amine attacks the other carbonyl to form a 2,5-dihydroxytetrahydropyrrole derivative which undergoes dehydration to give the corresponding substituted pyrrole. [7] Paal–Knorr pyrrole synthesis mechanism. The reaction is typically run under protic or Lewis acidic conditions, with a primary amine.
The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). [ 1 ] [ 2 ] [ 3 ] The method involves the reaction of an α- amino - ketone (1) and a compound containing an electron-withdrawing group (e.g. an ester as shown) α to a carbonyl group (2) .
This reaction involves the high-speed vibration milling (HSVM) of ketones with N-iodosuccinimide (NIS) and p-toluenesulfonic acid, to form an α-iodoketone in situ. This is followed by addition of a primary amine, a β-dicarbonyl compound, cerium(IV) ammonium nitrate (CAN) and silver nitrate , as shown in the scheme below:
Heterocyclic organic compounds can be usefully classified based on their electronic structure. The saturated organic heterocycles behave like the acyclic derivatives. Thus, piperidine and tetrahydrofuran are conventional amines and ethers, with modified steric profiles. Therefore, the study of organic heterocyclic chemistry focuses on organic ...
The condensation reaction can be shown below: After the condensation, the pyrrole formation can proceed as normal. The Trofimov reaction can produce both N-H and N-vinyl pyrroles depending on the reaction conditions used. The N-vinyl pyrrole can be formed by the deprotonation of the pyrrole nitrogen which then attacks a second acetylene molecule.
Primary amines are usually not used for enamine synthesis due to the preferential formation of the more thermodynamically stable imine species. [11] Methyl ketone self-condensation is a side-reaction which can be avoided through the addition of TiCl 4 [12] into the reaction mixture (to act as a water scavenger).
Pyrrolidine is a base. Its basicity is typical of other dialkyl amines. [7] Relative to many secondary amines, pyrrolidine is distinctive because of its compactness, a consequence of its cyclic structure. Pyrrolidine is used as a building block in the synthesis of more complex organic compounds.