enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA is a software layer that gives direct access to the GPU's virtual instruction set and parallel computational elements for the execution of compute kernels. [5] In addition to drivers and runtime kernels, the CUDA platform includes compilers, libraries and developer tools to help programmers accelerate their applications.

  3. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    In January 2019, the TensorFlow team released a developer preview of the mobile GPU inference engine with OpenGL ES 3.1 Compute Shaders on Android devices and Metal Compute Shaders on iOS devices. [30] In May 2019, Google announced that their TensorFlow Lite Micro (also known as TensorFlow Lite for Microcontrollers) and ARM's uTensor would be ...

  4. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.

  5. Pop!_OS - Wikipedia

    en.wikipedia.org/wiki/Pop!_OS

    Pop!_OS provides full out-of-the-box support for both AMD and Nvidia GPUs. Pop!_OS provides default disk encryption, streamlined window and workspace management, keyboard shortcuts for navigation as well as built-in power management profiles. The latest releases also have packages that allow for easy setup for TensorFlow and CUDA. [5] [6]

  6. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    OpenMP support OpenCL support CUDA support ROCm support [1] Automatic differentiation [2] Has pretrained models Recurrent nets Convolutional nets RBM/DBNs Parallel execution (multi node) Actively developed BigDL: Jason Dai (Intel) 2016 Apache 2.0: Yes Apache Spark Scala Scala, Python No No Yes Yes Yes Yes Caffe: Berkeley Vision and Learning ...

  7. Tensor Processing Unit - Wikipedia

    en.wikipedia.org/wiki/Tensor_Processing_Unit

    Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...

  8. General-purpose computing on graphics processing units

    en.wikipedia.org/wiki/General-purpose_computing...

    Notably, problems involving matrices and/or vectors – especially two-, three-, or four-dimensional vectors – were easy to translate to a GPU, which acts with native speed and support on those types. A significant milestone for GPGPU was the year 2003 when two research groups independently discovered GPU-based approaches for the solution of ...

  9. Google Tensor - Wikipedia

    en.wikipedia.org/wiki/Google_Tensor

    "Tensor" is a reference to Google's TensorFlow and Tensor Processing Unit technologies, and the chip is developed by the Google Silicon team housed within the company's hardware division, led by vice president and general manager Phil Carmack alongside senior director Monika Gupta, [15] in conjunction with the Google Research division.