enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    RNA adopts this double helical form, and RNA-DNA duplexes are mostly A-form, but B-form RNA-DNA duplexes have been observed. [14] In localized single strand dinucleotide contexts, RNA can also adopt the B-form without pairing to DNA. [15] A-DNA has a deep, narrow major groove which does not make it easily accessible to proteins.

  3. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    The chemical structure of RNA is very similar to that of DNA, but differs in three primary ways: Unlike double-stranded DNA, RNA is usually a single-stranded molecule (ssRNA) [4] in many of its biological roles and consists of much shorter chains of nucleotides. [5]

  4. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    All living cells contain both DNA and RNA (except some cells such as mature red blood cells), while viruses contain either DNA or RNA, but usually not both. [15] The basic component of biological nucleic acids is the nucleotide, each of which contains a pentose sugar (ribose or deoxyribose), a phosphate group, and a nucleobase. [16]

  5. Nucleic acid sequence - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_sequence

    Given the two 10-nucleotide sequences, line them up and compare the differences between them. Calculate the percent difference by taking the number of differences between the DNA bases divided by the total number of nucleotides. In this case there are three differences in the 10 nucleotide sequence. Thus there is a 30% difference.

  6. Sense (molecular biology) - Wikipedia

    en.wikipedia.org/wiki/Sense_(molecular_biology)

    Negative-sense (3′-to-5′) viral RNA is complementary to the viral mRNA, thus a positive-sense RNA must be produced by an RNA-dependent RNA polymerase from it prior to translation. Like DNA, negative-sense RNA has a nucleotide sequence complementary to the mRNA that it encodes; also like DNA, this RNA cannot be translated into protein directly.

  7. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    One major difference between DNA and RNA is the sugar, with the 2-deoxyribose in DNA being replaced by the related pentose sugar ribose in RNA. [12] A section of DNA. The bases lie horizontally between the two spiraling strands [15] (animated version).

  8. Ribonucleotide - Wikipedia

    en.wikipedia.org/wiki/Ribonucleotide

    DNA is defined by containing 2'-deoxy-ribose nucleic acid while RNA is defined by containing ribose nucleic acid. [1] In some occasions, DNA and RNA may contain some minor bases. Methylated forms of the major bases are most common in DNA. In viral DNA, some bases may be hydroxymethylated or glucosylated.

  9. Nucleic acid secondary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_secondary...

    Given the difference in widths of the major groove and minor groove, many proteins which bind to DNA do so through the wider major groove. [6] Many double-helical forms are possible; for DNA the three biologically relevant forms are A-DNA, B-DNA, and Z-DNA, while RNA double helices have structures similar to the A form of DNA.