enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nonparametric regression - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_regression

    Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric equation is assumed for the relationship between predictors and dependent variable.

  3. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as in parametric statistics. [1] Nonparametric statistics can be used for descriptive statistics or statistical ...

  4. Passing–Bablok regression - Wikipedia

    en.wikipedia.org/wiki/Passing–Bablok_regression

    The Passing-Bablok procedure fits the parameters and of the linear equation = + using non-parametric methods. The coefficient b {\displaystyle b} is calculated by taking the shifted median of all slopes of the straight lines between any two points, disregarding lines for which the points are identical or b = − 1 {\displaystyle b=-1} .

  5. Additive model - Wikipedia

    en.wikipedia.org/wiki/Additive_Model

    In statistics, an additive model (AM) is a nonparametric regression method. It was suggested by Jerome H. Friedman and Werner Stuetzle (1981) [ 1 ] and is an essential part of the ACE algorithm. The AM uses a one-dimensional smoother to build a restricted class of nonparametric regression models.

  6. Theil–Sen estimator - Wikipedia

    en.wikipedia.org/wiki/Theil–Sen_estimator

    It can be significantly more accurate than non-robust simple linear regression (least squares) for skewed and heteroskedastic data, and competes well against least squares even for normally distributed data in terms of statistical power. [11] It has been called "the most popular nonparametric technique for estimating a linear trend". [2]

  7. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  8. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable. The objective is to find a non-linear relation between a pair of random variables X and Y .

  9. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.

  1. Related searches assumptions of non parametric statistics in regression analysis ppt lecture

    non parametric statisticsnon parametric hierarchy
    definition of nonparametric statistics