enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Booth's multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Booth's_multiplication...

    Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...

  3. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    Another method of multiplication is called Toom–Cook or Toom-3. The Toom–Cook method splits each number to be multiplied into multiple parts. The Toom–Cook method is one of the generalizations of the Karatsuba method. A three-way Toom–Cook can do a size-3N multiplication for the cost of five size-N multiplications. This accelerates the ...

  4. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.

  5. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    This method is an efficient variant of the 2 k-ary method. For example, to calculate the exponent 398, which has binary expansion (110 001 110) 2, we take a window of length 3 using the 2 k-ary method algorithm and calculate 1, x 3, x 6, x 12, x 24, x 48, x 49, x 98, x 99, x 198, x 199, x 398.

  6. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The Schönhage–Strassen algorithm is based on the fast Fourier transform (FFT) method of integer multiplication. This figure demonstrates multiplying 1234 × 5678 = 7006652 using the simple FFT method. Base 10 is used in place of base 2 w for illustrative purposes.

  7. Bitwise operation - Wikipedia

    en.wikipedia.org/wiki/Bitwise_operation

    For unsigned integers, the bitwise complement of a number is the "mirror reflection" of the number across the half-way point of the unsigned integer's range. For example, for 8-bit unsigned integers, NOT x = 255 - x, which can be visualized on a graph as a downward line that effectively "flips" an increasing range from 0 to 255, to a decreasing ...

  8. Carry (arithmetic) - Wikipedia

    en.wikipedia.org/wiki/Carry_(arithmetic)

    For example, when 6 and 7 are added to make 13, the "3" is written to the same column and the "1" is carried to the left. When used in subtraction the operation is called a borrow . Carrying is emphasized in traditional mathematics , while curricula based on reform mathematics do not emphasize any specific method to find a correct answer.

  9. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    For example, if N = 17, then the sum of the residue classes 7 and 15 is computed by finding the integer sum 7 + 15 = 22, then determining 22 mod 17, the integer between 0 and 16 whose difference with 22 is a multiple of 17.