Search results
Results from the WOW.Com Content Network
Dopamine receptors are implicated in many neurological processes, including motivational and incentive salience, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signaling. Abnormal dopamine receptor signaling and dopaminergic nerve function is implicated in several neuropsychiatric disorders. [2]
A dopamine molecule consists of a catechol structure (a benzene ring with two hydroxyl side groups) with one amine group attached via an ethyl chain. [14] As such, dopamine is the simplest possible catecholamine, a family that also includes the neurotransmitters norepinephrine and epinephrine. [15]
D 1 receptor has a high degree of structural homology to another dopamine receptor, D 5, and they both bind similar drugs. [13] As a result, none of the known orthosteric ligands is selective for the D 1 vs. the D 5 receptor, but the benzazepines generally are more selective for the D 1 and D 5 receptors versus the D 2-like family. [12]
Non-ergoline dopamine receptor agonists have higher binding affinity to dopamine D 3-receptors than dopamine D 2-receptors. This binding affinity is related to D 2 and D 3 receptor homology, the homology between them has a high degree of sequence and is closest in their transmembrane domains, were they share around 75% of the amino acid. [37]
Dopamine receptor D 2, also known as D 2 R, is a protein that, in humans, is encoded by the DRD2 gene.After work from Paul Greengard's lab had suggested that dopamine receptors were the site of action of antipsychotic drugs, several groups, including those of Solomon H. Snyder and Philip Seeman used a radiolabeled antipsychotic drug to identify what is now known as the dopamine D 2 receptor. [5]
The dopamine receptor D 4 is a dopamine D2-like G protein-coupled receptor encoded by the DRD4 gene on chromosome 11 at 11p15.5. [5] The structure of DRD4 has been reported in complex with the antipsychotic drug nemonapride. [6] As with other dopamine receptor subtypes, the D 4 receptor is activated by the neurotransmitter dopamine.
The D 2-like receptors [1] are a subfamily of dopamine receptors that bind the endogenous neurotransmitter dopamine. The D 2-like subfamily consists of three G-protein coupled receptors that are coupled to G i /G o and mediate inhibitory neurotransmission, of which include D 2, D 3, and D 4. For more information, please see the respective main ...
The dopamine neurons of the dopaminergic pathways synthesize and release the neurotransmitter dopamine. [2] [3] Enzymes tyrosine hydroxylase and dopa decarboxylase are required for dopamine synthesis. [4] These enzymes are both produced in the cell bodies of dopamine neurons. Dopamine is stored in the cytoplasm and vesicles in axon terminals.