Search results
Results from the WOW.Com Content Network
A data set which describes the global average of the Earth's surface curvature is called the mean Earth Ellipsoid. It refers to a theoretical coherence between the geographic latitude and the meridional curvature of the geoid. The latter is close to the mean sea level, and therefore an ideal Earth ellipsoid has the same volume as the geoid.
This equation reduces to that of the volume of a sphere when all three elliptic radii are equal, and to that of an oblate or prolate spheroid when two of them are equal. The volume of an ellipsoid is 2 / 3 the volume of a circumscribed elliptic cylinder, and π / 6 the volume of the circumscribed box.
For that reason, in cartography and geodesy the Earth is often approximated by an oblate spheroid, known as the reference ellipsoid, instead of a sphere. The current World Geodetic System model uses a spheroid whose radius is 6,378.137 km (3,963.191 mi) at the Equator and 6,356.752 km (3,949.903 mi) at the poles .
The geometrical separation between it and the reference ellipsoid is called the geoidal undulation, or more usually the geoid-ellipsoid separation, N. It varies globally between ±110 m. A reference ellipsoid, customarily chosen to be the same size (volume) as the geoid, is described by its semi-major axis (equatorial radius) a and flattening f.
Due to the irregularity of the Earth's true gravity field, the equilibrium figure of sea water, or the geoid, will also be of irregular form. In some places, like west of Ireland , the geoid—mathematical mean sea level—sticks out as much as 100 m above the regular, rotationally symmetric reference ellipsoid of GRS80; in other places, like ...
The inverse problem for earth sections is: given two points, and on the surface of the reference ellipsoid, find the length, , of the short arc of a spheroid section from to and also find the departure and arrival azimuths (angle from true north) of that curve, and . The figure to the right illustrates the notation used here.
Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity , or oblateness . The usual notation for flattening is f {\displaystyle f} and its definition in terms of the semi-axes a {\displaystyle a} and b {\displaystyle b} of ...
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...