Search results
Results from the WOW.Com Content Network
A hydrohalogenation reaction is the electrophilic addition of hydrogen halides like hydrogen chloride or hydrogen bromide to alkenes to yield the corresponding haloalkanes. [ 1 ] [ 2 ] [ 3 ] If the two carbon atoms at the double bond are linked to a different number of hydrogen atoms, the halogen is found preferentially at the carbon with fewer ...
The addition of halogens to alkenes proceeds via intermediate halonium ions. In special cases, such intermediates have been isolated. [5] Bromination is more selective than chlorination because the reaction is less exothermic. Illustrative of the bromination of an alkene is the route to the anesthetic halothane from trichloroethylene: [6]
Cracking of n-octane to give pentane and propene. Related to this is catalytic dehydrogenation, where an alkane loses hydrogen at high temperatures to produce a corresponding alkene. [1] This is the reverse of the catalytic hydrogenation of alkenes. Dehydrogenation of butane to give butadiene and isomers of butene. This process is also known as ...
A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group. [1] The general chemical formula of the halogen addition reaction is: C=C + X 2 → X−C−C−X (X represents the halogens bromine or chlorine, and in this case, a solvent could be CH 2 ...
1,2-disubstituted Cycloalkene undergoing syn and anti addition. Syn addition is the addition of two substituents to the same side (or face) of a double bond or triple bond, resulting in a decrease in bond order but an increase in number of substituents. [3] Generally the substrate will be an alkene or alkyne.
In hydrohalogenation, an alkene reacts with a dry hydrogen halide (HX) electrophile like hydrogen chloride (HCl) or hydrogen bromide (HBr) to form a mono-haloalkane. The double bond of the alkene is replaced by two new bonds, one with the halogen and one with the hydrogen atom of the hydrohalic acid.
Scheme 1. The Ramberg–Bäcklund reaction. The overall transformation is the conversion of the carbon–sulfur bonds to a carbon–carbon double bond. The original procedure involved halogenation of a sulfide, followed by oxidation to the sulfone. Recently, the preferred method has reversed the order of the steps.
General structure of a halohydrin, where X = I, Br, F, or Cl Structure of the halohydrin 2-chloroethanol. In organic chemistry a halohydrin (also a haloalcohol or β-halo alcohol) is a functional group in which a halogen and a hydroxyl are bonded to adjacent carbon atoms, which otherwise bear only hydrogen or hydrocarbyl groups (e.g. 2-chloroethanol, 3-chloropropane-1,2-diol). [1]