Search results
Results from the WOW.Com Content Network
Because of the appended zero byte, this is always possible. Encode each group by deleting the trailing zero byte (if any) and prepending the number of non-zero bytes, plus one. Thus, each encoded group is the same size as the original, except that 254 non-zero bytes are encoded into 255 bytes by prepending a byte of 255.
Some encodings (the original version of BinHex and the recommended encoding for CipherSaber) use four bits instead of six, mapping all possible sequences of 4 bits onto the 16 standard hexadecimal digits. Using 4 bits per encoded character leads to a 50% longer output than base64, but simplifies encoding and decoding—expanding each byte in ...
For example, the four character string "I♥NY" is encoded in UTF-8 like this (shown as hexadecimal byte values): 49 E2 99 A5 4E 59. Of the six units in that sequence, 49, 4E, and 59 are singletons (for I, N, and Y), E2 is a lead unit and 99 and A5 are trail units. The heart symbol is represented by the combination of the lead unit and the two ...
On most modern computers, this is an eight bit string. Because the definition of a byte is related to the number of bits composing a character, some older computers have used a different bit length for their byte. [2] In many computer architectures, the byte is the smallest addressable unit, the atom of addressability, say. For example, even ...
To convert data to PEM printable encoding, the first byte is placed in the most significant eight bits of a 24-bit buffer, the next in the middle eight, and the third in the least significant eight bits. If there are fewer than three bytes left to encode (or in total), the remaining buffer bits will be zero.
A followup paper presented a variant encoding, "Stream VByte: Faster Byte Oriented Integer Compression", [5] which increased speeds to over 4 billion integers per second. This stream encoding separates the control stream from the encoded data, so is not binary compatible with LEB128.
The typical implementation works with 8 bit symbols, so the dictionary "codes" for hex 00 to hex FF (decimal 255) are pre-defined. Dictionary entries would be added starting with code value hex 100. Unlike LZ78, if a match is not found (or if the end of data), then only the dictionary code is output.
Each sequence begins with a one-byte token that is broken into two 4-bit fields. The first field represents the number of literal bytes that are to be copied to the output. The second field represents the number of bytes to copy from the already decoded output buffer (with 0 representing the minimum match length of 4 bytes).