enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The matrices L and U could be thought to have "encoded" the Gaussian elimination process. The cost of solving a system of linear equations is approximately 2 3 n 3 {\textstyle {\frac {2}{3}}n^{3}} floating-point operations if the matrix A {\textstyle A} has size n {\textstyle n} .

  3. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  4. Crout matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Crout_matrix_decomposition

    In linear algebra, the Crout matrix decomposition is an LU decomposition which decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U) and, although not always needed, a permutation matrix (P). It was developed by Prescott Durand Crout. [1] The Crout matrix decomposition algorithm differs slightly from the ...

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

  6. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.

  7. Frontal solver - Wikipedia

    en.wikipedia.org/wiki/Frontal_solver

    A frontal solver is an approach to solving sparse linear systems which is used extensively in finite element analysis. [1] Algorithms of this kind are variants of Gauss elimination that automatically avoids a large number of operations involving zero terms due to the fact that the matrix is only sparse. [2]

  8. Bruhat decomposition - Wikipedia

    en.wikipedia.org/wiki/Bruhat_decomposition

    In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) = of certain algebraic groups = into cells can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as a product of an upper triangular and lower triangular matrices—but with exceptional cases.

  9. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.