Search results
Results from the WOW.Com Content Network
If the limit of the summand is undefined or nonzero, that is , then the series must diverge. In this sense, the partial sums are Cauchy only if this limit exists and is equal to zero. The test is inconclusive if the limit of the summand is zero.
In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.
A test should be invariant between relevant subgroups (e.g., demographic groups) within a larger population. [6] For example, for a test to be used in the United Kingdom, the test and its items should have approximately the same meaning for British males and females.
Abel's uniform convergence test is a criterion for the uniform convergence of a series of functions or an improper integration of functions dependent on parameters. It is related to Abel's test for the convergence of an ordinary series of real numbers, and the proof relies on the same technique of summation by parts. The test is as follows.
The test is a used to measure an individual's symbolic verbal fluency. [4] [5] [6] The test asks the subject to write as many words as possible beginning with the letter 'S' within a 5-minute limit, then as many words as possible beginning with letter 'C' within 4 minute limit. The total number of 'S' and 'C' words produced, minus the number of ...
In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests.Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞.