enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  3. List of convolutions of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_convolutions_of...

    In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...

  4. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y , the distribution of the random variable Z that is formed as the product Z = X Y {\displaystyle Z=XY} is a product distribution .

  5. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    If X is a binomial (n, p) random variable then (nX) is a binomial (n, 1 − p) random variable. If X has cumulative distribution function F X, then the inverse of the cumulative distribution F X (X) is a standard uniform (0,1) random variable; If X is a normal (μ, σ 2) random variable then e X is a lognormal (μ, σ 2) random variable.

  6. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Bernoulli distribution, which takes value 1 with probability p and value 0 with probability q = 1 − p. The Rademacher distribution, which takes value 1 with probability 1/2 and value −1 with probability 1/2. The binomial distribution, which describes the number of successes in a series of independent Yes/No experiments all with the same ...

  7. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).

  8. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    If the distribution of X is discrete and one knows its probability mass function p X, then the expected value of g(X) is ⁡ [()] = (), where the sum is over all possible values x of X. If instead the distribution of X is continuous with probability density function f X, then the expected value of g(X) is ⁡ [()] = ()

  9. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    Just as extreme values of the normal distribution have low probability (and give small p-values), extreme values of the chi-squared distribution have low probability. An additional reason that the chi-squared distribution is widely used is that it turns up as the large sample distribution of generalized likelihood ratio tests (LRT). [ 8 ]