Search results
Results from the WOW.Com Content Network
However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks. Any agent can be assigned to perform any task, incurring some cost that may vary depending on the agent-task assignment.
The problem of finding the closest distance between two convex polytopes, specified by their sets of vertices, may be represented as an LP-type problem. In this formulation, the set S is the set of all vertices in both polytopes, and the function value f(A) is the negation of the smallest distance between the convex hulls of the two subsets A ...
The problem can be formulated as an integer linear programming problem. ... it is called the bin packing problem. The most general formulation has two-sided ...
There is a close connection between linear programming problems, eigenequations, and von Neumann's general equilibrium model. The solution to a linear programming problem can be regarded as a generalized eigenvector. The eigenequations of a square matrix are as follows:
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
In operations research, the Big M method is a method of solving linear programming problems using the simplex algorithm.The Big M method extends the simplex algorithm to problems that contain "greater-than" constraints.
In mathematical optimization theory, the linear complementarity problem (LCP) arises frequently in computational mechanics and encompasses the well-known quadratic programming as a special case. It was proposed by Cottle and Dantzig in 1968.