Search results
Results from the WOW.Com Content Network
More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.
If T is the empty set, then {v} is an upper bound for T in P. Suppose then that T is non-empty. We need to show that T has an upper bound, that is, there exists a linearly independent subset B of V containing all the members of T. Take B to be the union of all the sets in T. We wish to show that B is an upper bound for T in P.
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
If (,) is a partially ordered set, such that each pair of elements in has a meet, then indeed = if and only if , since in the latter case indeed is a lower bound of , and since is the greatest lower bound if and only if it is a lower bound. Thus, the partial order defined by the meet in the universal algebra approach coincides with the original ...
13934 and other numbers x such that x ≥ 13934 would be an upper bound for S. The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on ...
The seldom-considered dual notion to a dcpo is the filtered-complete poset. Dcpos with a least element ("pointed dcpos") are one of the possible meanings of the phrase complete partial order (cpo). If every subset that has some upper bound has also a least upper bound, then the respective poset is called bounded complete. The term is used ...
The first upper bound for this problem was proven (for d = 1 and d = 2) in 1938 by John Edensor Littlewood and A. Cyril Offord. [1] This Littlewood–Offord lemma states that if S is a set of n real or complex numbers of absolute value at least one and A is any disc of radius one, then not more than ( c log n / n ) 2 n {\displaystyle {\Big ...
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).