Search results
Results from the WOW.Com Content Network
Deletion on a chromosome. In genetics, a deletion (also called gene deletion, deficiency, or deletion mutation) (sign: Δ) is a mutation (a genetic aberration) in which a part of a chromosome or a sequence of DNA is left out during DNA replication.
In genetics and especially genetic engineering, deletion mapping is a technique used to find out the mutation sites within a gene. The principle of deletion mapping involves crossing a strain which has a point mutation in a gene, with multiple strains who each carry a deletion in a different region of the same gene.
In all of these techniques, the parent genes are fragmented and then recombined. [1] [4] DNA shuffling utilizes random recombination as opposed to site-directed mutagenesis in order to generate proteins with unique attributes or combinations of desirable characteristics encoded in the parent genes such as thermostability and high activity.
Types of mutations that can be introduced by random, site-directed, combinatorial, or insertional mutagenesis. In molecular biology, mutagenesis is an important laboratory technique whereby DNA mutations are deliberately engineered to produce libraries of mutant genes, proteins, strains of bacteria, or other genetically modified organisms.
The yeast deletion project, formally the Saccharomyces Genome Deletion Project, is a project to create data for a near-complete collection of gene-deletion mutants of the yeast Saccharomyces cerevisiae. Each strain carries a precise deletion of one of the genes in the genome. This allows researchers to determine what each gene does by comparing ...
Synthetic genetic array analysis is generally conducted using colony arrays on petriplates at standard densities (96, 384, 768, 1536). To perform a SGA analysis in S.cerevisiae, the query gene deletion is crossed systematically with a deletion mutant array (DMA) containing every viable knockout ORF of the yeast genome (currently 4786 strains). [9]
Gene knockout by mutation is commonly carried out in bacteria. An early instance of the use of this technique in Escherichia coli was published in 1989 by Hamilton, et al. [2] In this experiment, two sequential recombinations were used to delete the gene. This work established the feasibility of removing or replacing a functional gene in bacteria.
For example, in a knock-out screen, one or more genes are completely deleted and the deletion mutants are tested for phenotypes. Such screens have been done for all genes in many bacteria and even complex organisms, such as C. elegans. [1] A reverse genetic screen typically begins with a gene sequence followed by targeted inactivation. [9]