enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jablonski diagram - Wikipedia

    en.wikipedia.org/wiki/Jablonski_diagram

    Jablonski diagram including vibrational levels for absorbance, non-radiative decay, and fluorescence. When a molecule absorbs a photon, the photon energy is converted and increases the molecule's internal energy level. Likewise, when an excited molecule releases energy, it can do so in the form of a photon.

  3. Internal conversion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Internal_conversion...

    Jablonski diagram indicating intersystem crossing (left) and internal conversion (right). Internal conversion is a transition from a higher to a lower electronic state in a molecule or atom. [ 1 ] It is sometimes called "radiationless de-excitation", because no photons are emitted.

  4. Triplet-triplet annihilation - Wikipedia

    en.wikipedia.org/wiki/Triplet-Triplet_Annihilation

    A Jablonski diagram describing the mechanism of triplet-triplet annihilation. The energy of the first triplet excited state (T 1) is transferred to a second triplet excited state (T 1), resulting in (1) the first T 1 returning to the singlet ground state S0 and (2) the second T 1 promoting to the singlet excited state (S 1).

  5. Förster resonance energy transfer - Wikipedia

    en.wikipedia.org/wiki/Förster_resonance_energy...

    Jablonski diagram of FRET with typical timescales indicated. The black dashed line indicates a virtual photon.. Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). [1]

  6. Photochemistry - Wikipedia

    en.wikipedia.org/wiki/Photochemistry

    Thus, triplet states generally have longer lifetimes than singlet states. These transitions are usually summarized in a state energy diagram or Jablonski diagram, the paradigm of molecular photochemistry. These excited species, either S 1 or T 1, have a half-empty low-energy orbital, and are consequently more oxidizing than the ground state.

  7. File:Jablonski Diagram of Fluorescence Only-en.svg - Wikipedia

    en.wikipedia.org/wiki/File:Jablonski_Diagram_of...

    English: Jablonski diagram of absorbance, non-radiative decay, and fluorescence. Electronic transitions are about 1 eV. Vibrational transitions are about 0.1 eV. Rotational transitions (not shown) are about 0.001 eV. Absorption is about 1 femtosecond, relaxation takes about 1 picosecond, fluorescence takes about 1 nanosecond.

  8. Fluorescence - Wikipedia

    en.wikipedia.org/wiki/Fluorescence

    Jablonski diagram. After an electron absorbs a high-energy photon the system is excited electronically and vibrationally. The system relaxes vibrationally, and eventually fluoresces at a longer wavelength than the original high-energy photon had.

  9. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    There are various types of energy level diagrams for bonds between atoms in a molecule. Examples Molecular orbital diagrams , Jablonski diagrams , and Franck–Condon diagrams.