Search results
Results from the WOW.Com Content Network
Ordinary trigonometry studies triangles in the Euclidean plane .There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.
The theorem follows by dividing these two equations. The converse follows as a corollary. [3] Let D, E, F be given on the lines BC, AC, AB so that the equation holds. Let AD, BE meet at O and let F' be the point where CO crosses AB. Then by the theorem, the equation also holds for D, E, F'. Comparing the two,
A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d {\displaystyle d} approaches zero, a cyclic quadrilateral converges into a triangle A ′ B ′ C ′ , {\displaystyle \triangle A'B'C',} and the formulas above simplify to the analogous triangle formulas.
Generalization for arbitrary triangles, green area = blue area Construction for proof of parallelogram generalization. Pappus's area theorem is a further generalization, that applies to triangles that are not right triangles, using parallelograms on the three sides in place of squares (squares are a special case, of course). The upper figure ...
In 2000, Bernard Gibert proposed a generalization of the Lester Theorem involving the Kiepert hyperbola of a triangle. His result can be stated as follows: Every circle with a diameter that is a chord of the Kiepert hyperbola and perpendicular to the triangle's Euler line passes through the Fermat points. [11] [12]
Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.
Triangle with altitude h cutting base c into d + (c − d). By the Pythagorean theorem we have b 2 = h 2 + d 2 and a 2 = h 2 + (c − d) 2 according to the figure at the right. Subtracting these yields a 2 − b 2 = c 2 − 2cd. This equation allows us to express d in terms of the sides of the triangle: = + +.