enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  3. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Exploratory analysis of Bayesian models is an adaptation or extension of the exploratory data analysis approach to the needs and peculiarities of Bayesian modeling. In the words of Persi Diaconis: [16] Exploratory data analysis seeks to reveal structure, or simple descriptions in data. We look at numbers or graphs and try to find patterns.

  4. Bayes linear statistics - Wikipedia

    en.wikipedia.org/wiki/Bayes_linear_statistics

    Traditional subjective Bayesian analysis is based upon fully specified probability distributions, which are very difficult to specify at the necessary level of detail. Bayes linear analysis attempts to solve this problem by developing theory and practise for using partially specified probability models.

  5. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    In the objective or "non-informative" current, the statistical analysis depends on only the model assumed, the data analyzed, [56] and the method assigning the prior, which differs from one objective Bayesian practitioner to another. In the subjective or "informative" current, the specification of the prior depends on the belief (that is ...

  6. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  7. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    In 2004, an analysis of the Bayesian classification problem showed that there are sound theoretical reasons for the apparently implausible efficacy of naive Bayes classifiers. [4] Still, a comprehensive comparison with other classification algorithms in 2006 showed that Bayes classification is outperformed by other approaches, such as boosted ...

  8. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...

  9. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    In numerous publications on Bayesian experimental design, it is (often implicitly) assumed that all posterior probabilities will be approximately normal. This allows for the expected utility to be calculated using linear theory, averaging over the space of model parameters. [2]