enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lehmer code - Wikipedia

    en.wikipedia.org/wiki/Lehmer_code

    The usual way to prove that there are n! different permutations of n objects is to observe that the first object can be chosen in n different ways, the next object in n − 1 different ways (because choosing the same number as the first is forbidden), the next in n − 2 different ways (because there are now 2 forbidden values), and so forth.

  3. Enumerative combinatorics - Wikipedia

    en.wikipedia.org/wiki/Enumerative_combinatorics

    Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets S i indexed by the natural numbers, enumerative combinatorics seeks to describe a counting function which counts the number of objects in S n for each n.

  4. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    In the given example, there are 12 = 2(3!) permutations with property P 1, 6 = 3! permutations with property P 2 and no permutations have properties P 3 or P 4 as there are no restrictions for these two elements. The number of permutations satisfying the restrictions is thus: 4! − (12 + 6 + 0 + 0) + (4) = 24 − 18 + 4 = 10.

  5. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.

  6. Combinatorial proof - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_proof

    An archetypal double counting proof is for the well known formula for the number () of k-combinations (i.e., subsets of size k) of an n-element set: = (+) ().Here a direct bijective proof is not possible: because the right-hand side of the identity is a fraction, there is no set obviously counted by it (it even takes some thought to see that the denominator always evenly divides the numerator).

  7. Combinatorics - Wikipedia

    en.wikipedia.org/wiki/Combinatorics

    Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.

  8. Today’s NYT ‘Strands’ Hints, Spangram and Answers for ...

    www.aol.com/today-nyt-strands-hints-spangram...

    In today's puzzle, there are nine theme words to find (including the spangram). Hint: The first one can be found in the top-half of the board. Here are the first two letters for each word: BE. HU ...

  9. Necklace (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Necklace_(combinatorics)

    Compare box(6,7) in the triangle. 16 tiles from the game Tantrix, corresponding to the 16 necklaces with 2 red, 2 yellow and 2 green beads. In combinatorics , a k -ary necklace of length n is an equivalence class of n -character strings over an alphabet of size k , taking all rotations as equivalent.